

Abstracts

Novel Design Approach for X-Band GaAs Monolithic Analog 1/4 Frequency Divider

K. Honjo and M. Madihian. "Novel Design Approach for X-Band GaAs Monolithic Analog 1/4 Frequency Divider." 1986 Transactions on Microwave Theory and Techniques 34.4 (Apr. 1986 [T-MTT]): 436-441.

A novel analog frequency divider which can generate a 1/4 frequency component is proposed. The frequency divider consists of a dual-gate FET and a two-stage capacitor-resistor coupled amplifier. This circuit configuration also enables achieving a small-size GaAs MMIC analog frequency divider. In this analog frequency divider, the input signal $f_{0/}$ is mixed with signal component $f_{0/x}$ caused by noise or transients in a feedback loop. Then, a $(1 - 1/x)f_{0/}$ IF component is induced and is again mixed with the input signal. This process delivers the $f_{0/x}$ component regeneratively. Resultant continuous signal components $f_{0/x}$ and $(1 - 1/x)f_{0/}$ have a harmonic relation when the system reaches a steady state. The $f_{0/x}$ component can be mainly obtained at an output port of the frequency divider. The operation band was simulated using a SPICE II computer program. The designed bandwidth and conversion gain for the 1/4 frequency divider are 8.5-10.6 GHz and -3 dB, respectively. Based on the simulation, a GaAs monolithic analog 1/4 frequency divider was made and tested. The developed 1/4 frequency divider provides a 8.5-10.2-GHz operation bandwidth and -5 ± 1 -dB conversion gain. The designed and experimental values are in good agreement. The frequency division band can be shifted to higher frequency (10.65-11.2 GHz) by adopting the external matching circuit at the GaAs chip output port. The proposed analog frequency divider circuit can be applied not only for 1/4 frequency division, but also for 1/n frequency division (integer $n > 2$).

[Return to main document.](#)